FUNDAMENTAL INFORMATION ON OIL HYDRAULICS
PUSHING AND PULLING FORCE OF HYDRAULIC CYLINDERS

Cylinder Diameter, Inches	1	$11 / 2$	2	$2^{1 / 2}$	3	$3^{1 / 2}$	4	$4^{1 / 2}$	5	$5^{1 / 2}$	6	$6^{1 / 2}$
Cylinder Area, Square Inch	. 7854	1.767	3.142	4.909	7.065	9.621	12.57	15.90	19.64	23.76	28.27	33.18
Pushing Force, Lbs @ 1000 PSI	780	1767	3142	4909	7065	9621	12750	15900	19640	23760	28270	33180
Pulling Force, Lbs @ 1000 PSI	343	1325	2034	3801	5951	8513	11460	14790	18530	22650	27160	32070

FORMULAS AND ABBREVIATIONS

HP- Horsepower
1 Gallon - 231 Cubic Inches GPM - Gallons per Minute RPM - Revolutions per Minute

GPS - Gallons per Second PSI x Cylinder area Force PSI - Pounds per square inch Horsepower $=$ GPM \times PSI $\div 1714$ Horsepower $=$ Torque(foot lbs.) \times RPM $\div 5252$

PUMP CAPACITY OR OUTPUT REQUIRED

To determine gallon capacity or output of the pump required to operate a cylinder or cylinders at a predetermined or required speed, proceed as follows:
(1) Establish in seconds the time required to extend the cylinder to its full length.
(2) Determine cubic inch capacity of cylinder (area x length of stroke.)
(3) Convert cubic inches capacity of cylinders to gallons. (Cubic inches : $231=$ cylinder capacity in gallons.)
(4) Cylinder capacity in gallons \div required speed in seconds $=$ Gallons per second (GPS).
(5) GPS $\times 60=$ Gallons per minute (GPM).

Example: If it has been determined that a 3 " $\times 50$ " stroke cylinder must extend the full length in 4 seconds, proceed as follows:

Find cylinder area from table above.
Area of a 3 " cylinder is 7.065 square inches.
Capacity of cylinder is $7.065 \times 50=353.25$ cubic inches.
353.25 cubic inches $\div 231=1.530$ gallons.
1.530 gallons $\div 4$ seconds $=.3825$ gallons per second .
.3825 gallons per second $\times 60=22.90$ gallons per minute .
Therefore, the pump required must have output of 22.95 gallons per minute.

HORSEPOWER REQUIREMENTS

A practical formula for determining horsepower requirements for pumps is as follows:

Gallons per minute \times PSI Required $\div 1714=$ Horsepower.
Example: If a pump delivers 12 GPM and assuming that the required operating pressure is $1,000 \mathrm{PSI}$.
Then multiply $12 \mathrm{GPM} \times 1,000 \mathrm{PSI}=12,000$.
$12,000 \div 1714=7.0$ horsepower.
Therefore, it takes 7.0 horsepower to operate the pump.

HYDRAULIC CYLINDER FORCE

To determine the force exerted by hydraulic cylinder:
Multiply the hydraulic pressure by the cylinder area.
Example: Find force for a 3 " cylinder at 1,000 PSI.
Find cylinder area from table above
Area of a 3 " cylinder is 7.065 square inches.
7,065 square inches $\times 1,000 \mathrm{PSI}=7065 \mathrm{lbs}$. pushing force. If pulling
power is desired, find the area of piston rod.
For $1-3 / 16$ " rod, $1.1875 \times 1.1875 \times .785=1.114$ square inch.
This is subtracted from the cylinder area.
7.065 minus $1.114=5.951$ square inches.
5.951 square inches $\times 1,000 \mathrm{PSI}=5951 \mathrm{lbs}$. pulling force .

HYDRAULIC CYLINDER CUBIC DISPLACEMENT

To determine the cubic displacement of hydraulic cylinder:
Multiply the cylinder area by the length of the cylinder stroke.
Example: A 3" cylinder with 50 " stroke.
Find cylinder area from table above
Area of a 3 " cylinder $=7.065$ square inches.
7.065 square inches $\times 50$ " $=353.45$ cubic inches.

To convert to gallons, divide by 231.
$353.45 \div 231=1.530$ gallons displacement.

CYLINDER PRESSURE CHART

PUSH With Various Pressures
Cylinder Power in Pounds At Various Pressure

Pump Pressure	3,000	2,500	2,000	1,500	1,250	1,000	750	500
$5^{\prime \prime}$ Bore	58,899	49,083	39,267	29,451	24,543	19,635	14,724	9,816
$4 "$ Bore	37,694	31,412	25,130	18,848	15,707	12,566	9,423	6,282
$3-1 / 2^{\prime \prime}$ Bore	28,861	24,051	19,241	14,431	12,026	9,621	7,215	4,810
$3^{\prime \prime}$ Bore	21,204	17,670	14,136	10,602	8,835	7,068	5,301	3,534
$2-1 / 2^{\prime \prime}$ Bore	14,724	12,270	9,816	7,362	6,136	4,908	3,681	2,454
$2 "$ Bore	9,421	7,851	6,281	4,711	3,926	3,141	2,355	1,570
$1-1 / 2^{\prime \prime}$ Bore	5,295	4,413	3,531	2,649	2,208	1,767	1,323	882

PULL With Various Pressures

Pump Pressure \rightarrow	3,000	2,500	2,000	1,500	1,250	1,000	750	500
5" Bore, 2" Shaft	49,478	41,232	32,986	24,740	20,617	16,494	12,369	8,246
5" Bore, 1-1/2" Shaft	53,604	44,670	35,736	26,802	22,335	17,868	13,401	8,934
4" Bore, 2" Shaft	28,273	23,561	18,849	14,137	11,781	9,425	7,068	4,712
4" Bore, 1-1/2" Shaft	32,391	26,993	21,595	16,197	13,498	10,799	8,097	5,398
4" Bore, 1-1/4" Shaft	34,011	28,343	22,675	17,007	14,173	11,339	8,502	5,668
3-1/2" Bore, 2" Shaft	19,440	16,200	12,960	9,720	8,100	6,480	4,860	3,240
3-1/2" Bore, 1-1/2" Shaft	23,558	19,632	15,706	11,780	9,817	7,854	5,889	3,926
3-1/2" Bore, 1-1/4" Shaft	25,178	20,982	16,786	12,590	10,492	8,394	6,294	4,196
3" Bore, 1-1/2" Shaft	15,901	13,251	10,601	7,951	6,626	5,301	3,975	2,650
3" Bore, 1-1/4" Shaft	17,521	14,601	11,681	8,761	7,301	5,841	4,380	2,920
3" Bore, 1-1/8" Shaft	18,218	15,182	12,146	9,110	7,592	6,074	4,554	3,036
2-1/2" Bore, 1-1/16" Shaft	12,062	10,052	8,042	6,032	5,027	4,022	3,015	2,010
2" Bore, 1-1/16" Shaft	6,759	5,633	4,507	3,381	2,818	2,255	1,689	1,126
1-1/2" Bore, 3/4" Shaft	3,974	3,312	2,650	1,988	1,657	1,326	993	662

NOTE: - The Pull at a given pressure will change according to shaft size.

